7 research outputs found

    Multicentre Performance Evaluation of the Elecsys Anti-SARS-CoV-2 Immunoassay as an Aid in Determining Previous Exposure to SARS-CoV-2

    Get PDF
    Introduction We performed a multicentre evaluation of the Elecsys® Anti-SARS-CoV-2 immunoassay (Roche Diagnostics), an assay utilising a recombinant protein representing the nucleocapsid (N) antigen, for the in vitro qualitative detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Specificity was evaluated using serum/plasma samples from blood donors and routine diagnostic specimens collected before September 2019 (i.e., presumed negative for SARS-CoV-2-specific antibodies); sensitivity was evaluated using samples from patients with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection. Point estimates and 95% confidence intervals (CIs) were calculated. Method comparison was performed versus commercially available assays. Results Overall specificity for the Elecsys Anti-SARS-CoV-2 immunoassay (n = 9575) was 99.85% (95% CI 99.75–99.92): blood donors (n = 6714; 99.82%), routine diagnostic specimens (n = 2861; 99.93%), pregnant women (n = 2256; 99.91%), paediatric samples (n = 205; 100.00%). The Elecsys Anti-SARS-CoV-2 immunoassay demonstrated significantly higher specificity versus LIAISON SARS-CoV-2 S1/S2 IgG (99.71% vs. 98.48%), EUROIMMUN Anti-SARS-CoV-2 IgG (100.00% vs. 94.87%), ADVIA Centaur SARS-CoV-2 Total (100.00% vs. 87.32%) and iFlash SARS-CoV-2 IgM (100.00% vs. 99.58%) assays, and comparable specificity to ARCHITECT SARS-CoV-2 IgG (99.75% vs. 99.65%) and iFlash SARS-CoV-2 IgG (100.00% vs. 100.00%) assays. Overall sensitivity for Elecsys Anti-SARS-CoV-2 immunoassay samples drawn at least 14 days post-PCR confirmation (n = 219) was 93.61% (95% CI 89.51–96.46). No statistically significant differences in sensitivity were observed between the Elecsys Anti-SARS-CoV-2 immunoassay versus EUROIMMUN Anti-SARS-CoV-2 IgG (90.32% vs. 95.16%) and ARCHITECT SARS-CoV-2 IgG (84.81% vs. 87.34%) assays. The Elecsys Anti-SARS-CoV-2 immunoassay showed significantly lower sensitivity versus ADVIA Centaur SARS-CoV-2 Total (85.19% vs. 95.06%) and iFlash SARS-CoV-2 IgG (86.25% vs. 93.75%) assays, but significantly higher sensitivity versus the iFlash SARS-CoV-2 IgM assay (86.25% vs. 33.75%). Conclusion The Elecsys Anti-SARS-CoV-2 immunoassay demonstrated very high specificity and high sensitivity in samples collected at least 14 days post-PCR confirmation of SARS-CoV-2 infection, supporting its use to aid in determination of previous exposure to SARS-CoV-2

    De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents

    No full text
    Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations

    De novo missense mutations in TNNC1\it TNNC1 and TNNI3\it TNNI3 causing severe infantile cardiomyopathy affect myofilament structure and function and are modulated by troponin targeting agents

    No full text
    Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1\it TNNC1 (p.cTnCG34S\it {p.cTnC-G34S}) and TNNI3\it TNNI3 ((p.cTnID127Y\it {p.cTnI-D127Y}) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit inter-actions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient’s myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations

    Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI) : a phase 3, placebo-controlled, randomised trial

    No full text
    Background: Patients with stable coronary artery disease and diabetes with previous percutaneous coronary intervention (PCI), particularly those with previous stenting, are at high risk of ischaemic events. These patients are generally treated with aspirin. In this trial, we aimed to investigate if these patients would benefit from treatment with aspirin plus ticagrelor. Methods: The Effect of Ticagrelor on Health Outcomes in diabEtes Mellitus patients Intervention Study (THEMIS) was a phase 3 randomised, double-blinded, placebo-controlled trial, done in 1315 sites in 42 countries. Patients were eligible if 50 years or older, with type 2 diabetes, receiving anti-hyperglycaemic drugs for at least 6 months, with stable coronary artery disease, and one of three other mutually non-exclusive criteria: a history of previous PCI or of coronary artery bypass grafting, or documentation of angiographic stenosis of 50% or more in at least one coronary artery. Eligible patients were randomly assigned (1:1) to either ticagrelor or placebo, by use of an interactive voice-response or web-response system. The THEMIS-PCI trial comprised a prespecified subgroup of patients with previous PCI. The primary efficacy outcome was a composite of cardiovascular death, myocardial infarction, or stroke (measured in the intention-to-treat population). Findings: Between Feb 17, 2014, and May 24, 2016, 11 154 patients (58% of the overall THEMIS trial) with a history of previous PCI were enrolled in the THEMIS-PCI trial. Median follow-up was 3·3 years (IQR 2·8–3·8). In the previous PCI group, fewer patients receiving ticagrelor had a primary efficacy outcome event than in the placebo group (404 [7·3%] of 5558 vs 480 [8·6%] of 5596; HR 0·85 [95% CI 0·74–0·97], p=0·013). The same effect was not observed in patients without PCI (p=0·76, p interaction=0·16). The proportion of patients with cardiovascular death was similar in both treatment groups (174 [3·1%] with ticagrelor vs 183 (3·3%) with placebo; HR 0·96 [95% CI 0·78–1·18], p=0·68), as well as all-cause death (282 [5·1%] vs 323 [5·8%]; 0·88 [0·75–1·03], p=0·11). TIMI major bleeding occurred in 111 (2·0%) of 5536 patients receiving ticagrelor and 62 (1·1%) of 5564 patients receiving placebo (HR 2·03 [95% CI 1·48–2·76], p<0·0001), and fatal bleeding in 6 (0·1%) of 5536 patients with ticagrelor and 6 (0·1%) of 5564 with placebo (1·13 [0·36–3·50], p=0·83). Intracranial haemorrhage occurred in 33 (0·6%) and 31 (0·6%) patients (1·21 [0·74–1·97], p=0·45). Ticagrelor improved net clinical benefit: 519/5558 (9·3%) versus 617/5596 (11·0%), HR=0·85, 95% CI 0·75–0·95, p=0·005, in contrast to patients without PCI where it did not, p interaction=0·012. Benefit was present irrespective of time from most recent PCI. Interpretation: In patients with diabetes, stable coronary artery disease, and previous PCI, ticagrelor added to aspirin reduced cardiovascular death, myocardial infarction, and stroke, although with increased major bleeding. In that large, easily identified population, ticagrelor provided a favourable net clinical benefit (more than in patients without history of PCI). This effect shows that long-term therapy with ticagrelor in addition to aspirin should be considered in patients with diabetes and a history of PCI who have tolerated antiplatelet therapy, have high ischaemic risk, and low bleeding risk
    corecore